Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PeerJ ; 11: e16655, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38144191

RESUMEN

Background-Aim: Protistan communities have a major contribution to biochemical processes and food webs in coastal ecosystems. However, related studies are scarce and usually limited in specific groups and/or sites. The present study examined the spatial structure of the entire protistan community in seven different gulfs and three different depths in a regional Mediterranean Sea, aiming to define taxa that are important for differences detected in the marine microbial network across the different gulfs studied as well as their trophic interactions. Methods: Protistan community structure analysis was based on the diversity of the V2-V3 hypervariable region of the 18S rRNA gene. Operational taxonomic units (OTUs) were identified using a 97% sequence identity threshold and were characterized based on their taxonomy, trophic role, abundance and niche specialization level. The differentially abundant, between gulfs, OTUs were considered for all depths and interactions amongst them were calculated, with statistic and network analysis. Results: It was shown that Dinophyceae, Bacillariophyta and Syndiniales were the most abundant groups, prevalent in all sites and depths. Gulfs separation was more striking at surface corroborating with changes in environmental factors, while it was less pronounced in higher depths. The study of differentially abundant, between gulfs, OTUs revealed that the strongest biotic interactions in all depths occurred between parasite species (mainly Syndiniales) and other trophic groups. Most of these species were generalists but not abundant highlighting the importance of rare species in protistan community assemblage. Conclusion: Overall this study revealed the emergence of parasites as important contributors in protistan network regulation regardless of depth.


Asunto(s)
Microbiota , Parásitos , Animales , Eucariontes/genética , Parásitos/genética , Biodiversidad , ARN Ribosómico 18S/genética
2.
PeerJ ; 10: e14311, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36353601

RESUMEN

Remote sensing of inland waters is challenging, but also important, due to the need to monitor the ever-increasing harmful algal blooms (HABs), which have serious effects on water quality. The Ocean and Land Color Instrument (OLCI) of the Sentinel-3 satellites program is capable of providing images for the monitoring of such waters. Atmospheric correction is a necessary process in order to retrieve the desired surface-leaving radiance signal and several atmospheric correction methods have been developed through the years. However, many of these correction methods require programming language skills, or function as commercial software plugins, limiting their possibility of use by end users. Accordingly, in this study, the free SNAP software provided by the European Space Agency (ESA) was used to evaluate the possible differences between a partial atmospheric correction method accounting for Rayleigh scattering and a full atmospheric correction method (iCOR), applied on Sentinel-3 OLCI images of a shallow, highly eutrophic water reservoir. For the complete evaluation of the two methods, in addition to the comparison of the band reflectance values, chlorophyll (CHL) and cyanobacteria (CI) indices were also calculated and their values were intercompared. The results showed, that although the absolute values between the two correction methods did not coincide, there was a very good correlation between the two methods for both bands' reflectance (r > 0.73) and the CHL and CI indices values (r > 0.95). Therefore, since iCOR correction image processing time is 25 times longer than Rayleigh correction, it is proposed that the Rayleigh partial correction method may be alternatively used for seasonal water monitoring, especially in cases of long time-series, enhancing time and resources use efficiency. Further comparisons of the two methods in other inland water bodies and evaluation with in situ chlorophyll and cyanobacteria measurements will enhance the applicability of the methodology.


Asunto(s)
Clorofila , Calidad del Agua , Floraciones de Algas Nocivas , Factores de Tiempo
3.
PeerJ ; 9: e11522, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34141483

RESUMEN

The aim of this study is to investigate the effect of three daily fish feeding frequencies, two, four and eight times per day (FF2, FF4, and FF8, respectively) on growth performance of sea bass (Dicentrarchus labrax)and lettuce plants (Lactuca sativa) reared in aquaponics. 171 juvenile sea bass with an average body weight of 6.80 ± 0.095 g were used, together with 24 lettuce plants with an average initial height of 11.78 ± 0.074 cm over a 45-day trial period. FF2 fish group showed a significantly lower final weight, weight gain and specific growth rate than the FF4 and FF8 groups. Voluntary feed intake was similar for all the three feeding frequencies treatmens (p > 0.05). No plant mortality was observed during the 45-day study period. All three aquaponic systems resulted in a similar leaf fresh weight and fresh and dry aerial biomass. The results of the present study showed that the FF4 or FF8 feeding frequency contributes to the more efficient utilization of nutrients for better growth of sea bass adapted to fresh water while successfully supporting plant growth to a marketable biomass.

4.
Front Microbiol ; 11: 1848, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33013724

RESUMEN

Recent discoveries suggest that the candidate superphyla Patescibacteria and DPANN constitute a large fraction of the phylogenetic diversity of Bacteria and Archaea. Their small genomes and limited coding potential have been hypothesized to be ancestral adaptations to obligate symbiotic lifestyles. To test this hypothesis, we performed cell-cell association, genomic, and phylogenetic analyses on 4,829 individual cells of Bacteria and Archaea from 46 globally distributed surface and subsurface field samples. This confirmed the ubiquity and abundance of Patescibacteria and DPANN in subsurface environments, the small size of their genomes and cells, and the divergence of their gene content from other Bacteria and Archaea. Our analyses suggest that most Patescibacteria and DPANN in the studied subsurface environments do not form specific physical associations with other microorganisms. These data also suggest that their unusual genomic features and prevalent auxotrophies may be a result of ancestral, minimal cellular energy transduction mechanisms that lack respiration, thus relying solely on fermentation for energy conservation.

5.
Artículo en Inglés | MEDLINE | ID: mdl-32896688

RESUMEN

Despite the technical progress in high-throughput sequencing technologies, defining the sample size which is capable of yielding representative inferences in metabarcoding analysis still remains debatable. The present study addresses the influence of individual variability in assessing dietary effects on fish gut microbiota parameters and estimates the biological sample size that is sufficient to imprint a statistically secure outcome. European sea bass (Dicentrarchus labrax) and gilthead sea bream (Sparus aurata) were fed three alternative animal protein diets and a fishmeal control diet. Gut microbiota data from 12 individuals per diet, derived from Illumina sequencing of the V3-V4 region of the 16S rRNA gene, were randomized in all possible combinations of n-1 individuals. Results in this study showcased that increasing the sample size can limit the prevalence of individuals with high microbial load on the outcome and can ensure the statistical confidence required for an accurate validation of dietary-induced microbe shifts. Inter-individual variability was evident in the four dietary treatments where consequently misleading inferences arose from insufficient biological replication. These findings have critical implications for the design of future metabarcoding studies and highlight the urgency in selecting an adequate sample size able to safely elucidate the dietary effects on fish gut microbial communities.


Asunto(s)
Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Dieta/veterinaria , Proteínas en la Dieta/administración & dosificación , Proteínas de Peces/administración & dosificación , Microbioma Gastrointestinal , Tracto Gastrointestinal/microbiología , Animales , Lubina , Dorada
6.
Environ Manage ; 64(6): 675-688, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31748947

RESUMEN

The enactment of the Water Framework Directive (WFD) initiated scientific efforts to develop reliable methods for comparing prevailing lake conditions against reference (or nonimpaired) states, using the state of a set biological elements. Drawing a distinction between impaired and natural conditions can be a challenging exercise. Another important aspect is to ensure that water quality assessment is comparable among the different Member States. In this context, the present paper offers a constructive critique of the practices followed during the WFD implementation in Greece by pinpointing methodological weaknesses and knowledge gaps that undermine our ability to classify the ecological quality of Greek lakes. One of the pillars of WDF is a valid lake typology that sets ecological standards transcending geographic regions and national boundaries. The national typology of Greek lakes has failed to take into account essential components. WFD compliance assessments based on the descriptions of phytoplankton communities are oversimplified and as such should be revisited. Exclusion of most chroococcal species from the analysis of cyanobacteria biovolume in Greek lakes/reservoirs and most reservoirs in Spain, Portugal, and Cyprus is not consistent with the distribution of those taxa in lakes. Similarly, the total biovolume reference values and the indices used in classification schemes reflect misunderstandings of WFD core principles. This hampers the comparability of ecological status across Europe and leads to quality standards that are too relaxed to provide an efficient target for the protection of Greek/transboundary lakes such as the ancient Lake Megali Prespa.


Asunto(s)
Lagos , Fitoplancton , Monitoreo del Ambiente , Europa (Continente) , Grecia , Región Mediterránea , Portugal , España , Agua
7.
Proc Biol Sci ; 286(1914): 20191890, 2019 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-31662088

RESUMEN

The idea that 'everything is everywhere, but the environment selects' has been seminal in microbial biogeography, and marine phytoplankton is one of the prototypical groups used to illustrate this. The typical argument has been that phytoplankton is ubiquitous, but that distinct assemblages form under environmental selection. It is well established that phytoplankton assemblages vary considerably between coastal ecosystems. However, the relative roles of compartmentalization of regional seas and site-specific environmental conditions in shaping assemblage structures have not been specifically examined. We collected data from coastal embayments that fall within two different water compartments within the same regional sea and are characterized by highly localized environmental pressures. We used principal coordinates of neighbour matrices (PCNM) and asymmetric eigenvector maps (AEM) models to partition the effects that spatial structures, environmental conditions and their overlap had on the variation in assemblage composition. Our models explained a high percentage of variation in assemblage composition (59-65%) and showed that spatial structure consistent with marine compartmentalization played a more important role than local environmental conditions. At least during the study period, surface currents connecting sites within the two compartments failed to generate sufficient dispersal to offset the impact of differences due to compartmentalization. In other words, our findings suggest that, even for a prototypical cosmopolitan group, everything is not everywhere.


Asunto(s)
Ecosistema , Fitoplancton , Biodiversidad , Océanos y Mares
8.
ISME J ; 13(3): 767-779, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30397261

RESUMEN

Recent diversity studies have revealed that microbial communities of natural environments are dominated by species-like, sequence-discrete populations. However, how stable the sequence and gene-content diversity are within these populations and especially in highly dynamic lotic habitats remain unclear. Here we quantified the dynamics of intra-population diversity in samples spanning two years and five sites in the Kalamas River (Northwest Greece). A significant positive correlation was observed between higher intra-population sequence diversity and longer persistence over time, revealing that more diverse populations tended to represent more autochthonous (vs. allochthonous) community members. Assessment of intra-population gene-content changes caused by strain replacement or gene loss over time revealed different profiles with the majority of populations exhibiting gene-content changes close to 10% of the total genes, while one population exhibited ~21% change. The variable genes were enriched in hypothetical proteins and mobile elements, and thus, were probably functionally neutral or attributable to phage predation. A few notable exceptions to this pattern were also noted such as phototrophy-related proteins in summer vs. winter populations. Taken together, these results revealed that some freshwater genomes are remarkably dynamic, even across short time and spatial scales, and have implications for the bacterial species concept and microbial source tracking.


Asunto(s)
Bacterias/genética , Variación Genética , Genoma Bacteriano/genética , Microbiota/genética , Ríos/microbiología , Bacterias/aislamiento & purificación , Proteínas Bacterianas/genética , Ecosistema , Agua Dulce/microbiología , Grecia , Estaciones del Año , Factores de Tiempo
9.
Microorganisms ; 6(3)2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-30200504

RESUMEN

This study investigated the profile of the autochthonous gut bacterial communities in adult individuals of Sparus aurata and Dicentrarchus labrax reared in sea cages in five distantly located aquaculture farms in Greece and determine the impact of geographic location on them in order to detect the core gut microbiota of these commercially important fish species. Data analyses resulted in no significant geographic impact in the gut microbial communities within the two host species, while strong similarities between them were also present. Our survey revealed the existence of a core gut microbiota within and between the two host species independent of diet and geographic location consisting of the Delftia, Pseudomonas, Pelomonas, Propionibacterium, and Atopostipes genera.

10.
Biol Open ; 7(6)2018 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-29776922

RESUMEN

This study investigated the impact of different dietary ingredients, with different protein/lipid sources, on midgut and faeces bacteria community structures just before feeding and 3 h after feeding a single meal to individual rainbow trout (Oncorhynchus mykiss). Fish were kept in experimental rearing facilities and fed ad libitum twice daily for 5 weeks. Fish were fed three different commercial diets, which contained variations of high or low marine fishmeal/fish oil content. DNA was extracted from midgut and faeces samples for analysis of their bacterial 16S rRNA gene diversity by targeting the V3-V4 region with 454 pyrosequencing. A total of 332 unique bacterial operational taxonomic units (OTUs) were revealed in all samples. However, each sample was dominated (>80% relative abundance) by 2-14 OTUs, with the single most dominant OTU having >30% dominance, indicating that only a few bacteria were fundamental in terms of relative abundance in each treatment. Fifteen OTUs occurred in all samples (core microbiota). The majority of these OTUs belonged to the Proteobacteria, Firmicutes or Tenericutes, and were associated with other animal gut environments. The faecal material and the midgut samples had few overlaps in their shared OTUs. A postprandial response in the gut bacterial community structure 3 h after feeding highlights how dietary stimulation induces structural changes in the microbiota profiles in the established gut bacteria. This study showed that feeding O. mykiss different diets and even single meals lead to perturbations in the established gut bacteria of O. mykiss.

11.
Microorganisms ; 5(2)2017 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-28587211

RESUMEN

Microbes are considered to have a global distribution due to their high dispersal capabilities. However, our knowledge of the way geographically distant microbial communities assemble after dispersal in a new environment is limited. In this study, we examined whether communities would converge because similar taxa would be selected under the same environmental conditions, or would diverge because of initial community composition, after artificial dispersal. To this aim, a microcosm experiment was performed, in which the temporal changes in the composition and diversity of different prokaryoplankton assemblages from three distant geographic coastal areas (Banyuls-sur-Mer in northwest Mediterranean Sea, Pagasitikos Gulf in northeast Mediterranean and Woods Hole, MA, USA in the northwest Atlantic), were studied. Diversity was investigated using amplicon pyrosequencing of the V1-V3 hypervariable regions of the 16S rRNA. The three assemblages were grown separately in particle free and autoclaved Banyuls-sur-mer seawater at 18 °C in the dark. We found that the variability of prokaryoplankton community diversity (expressed as richness, evenness and dominance) as well as the composition were driven by patterns observed in Bacteria. Regarding community composition, similarities were found between treatments at family level. However, at the OTU level microbial communities from the three different original locations diverge rather than converge during incubation. It is suggested that slight differences in the composition of the initial prokaryoplankton communities, resulted in separate clusters the following days even when growth took place under identical abiotic conditions.

12.
Protist ; 167(4): 389-410, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27472657

RESUMEN

We studied the response of the heterotrophic flagellate (HF) community to the combined impact of warming and ocean acidification in a mesocosm experiment with a plankton community from the western Baltic Sea. We performed a quantitative analysis of the response at the level of total biomass and size classes and a semi-quantitative one at the level of individual taxa. Total biomass of HF was significantly lower under higher temperatures while there was no significant effect of CO2. The mean biomass of the picoflagellates did not respond to temperature while the three nanoflagellate size classes (class limits 3, 5, 8, 15µm) responded negatively to warming while not responding to CO2. The taxon-level results indicate that heterotrophic flagellates do not form a homogenous trophic guild, as often assumed in pelagic food web studies. Instead, the heterotrophic flagellates formed a "food web within the food web". There was a pronounced succession of flagellates leading from a dominance of bacterivores and colloidal matter feeders before the phytoplankton bloom to omnivorous feeders preying upon phytoplankton and heterotrophic flagellates during and after the bloom. This complex intraguild predation patterns probably dampened the response to experimental treatments.


Asunto(s)
Cambio Climático , Fitoplancton/fisiología , Agua de Mar/química , Zooplancton/fisiología , Animales , Biomasa , Ecosistema , Cadena Alimentaria , Alemania , Calor , Concentración de Iones de Hidrógeno
13.
ISME J ; 10(11): 2643-2657, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27093045

RESUMEN

Deep-sea hypersaline anoxic basins (DHABs) in the Eastern Mediterranean Sea are considered some of the most polyextreme habitats on Earth. In comparison to microbial activities occurring within the haloclines and brines of these unusual water column habitats near the Mediterranean seafloor, relatively little is known about microbial metabolic activities in the underlying sediments. In addition, it is not known whether activities are shaped by the unique chemistries of the different DHAB brines and whether evidence exists for active microbial eukaryotes in those sediments. Metatranscriptome analysis was applied to sediment samples collected using ROV Jason from underneath the haloclines of Urania, Discovery and L'Atalante DHABs and a control site. We report on expression of genes associated with sulfur and nitrogen cycling, putative osmolyte biosynthetic pathways and ion transporters, trace metal detoxification, selected eukaryotic activities (particularly of fungi), microbe-microbe interactions, and motility in sediments underlying the haloclines of three DHABs. Relative to our control sediment sample collected outside of Urania Basin, microbial communities (including eukaryotes) in the Urania and Discovery DHAB sediments showed upregulation of expressed genes associated with nitrogen transformations, osmolyte biosynthesis, heavy metals resistance and metabolism, eukaryotic organelle functions, and cell-cell interactions. Sediments underlying DHAB haloclines that have cumulative physico-chemical stressors within the limits of tolerance for microoorganisms can therefore be hotspots of activity in the deep Mediterranean Sea.


Asunto(s)
Bacterias/aislamiento & purificación , Sedimentos Geológicos/microbiología , Bacterias/genética , Bacterias/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Ecosistema , Perfilación de la Expresión Génica , Sedimentos Geológicos/química , Mar Mediterráneo , Agua de Mar/química , Agua de Mar/microbiología , Cloruro de Sodio/análisis , Cloruro de Sodio/metabolismo
14.
PeerJ ; 4: e1610, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26819852

RESUMEN

The cyanobacterium Arthrospira is among the most well-known food supplements worldwide known as "Spirulina." While it is a widely recognized health-promoting natural product, there are no reports on the molecular diversity of commercially available brands of "Spirulina" supplements and the occurrence of other cyanobacterial and heterotrophic bacterial microorganisms in these products. In this study, 454-pyrosequencing analysis of the total bacterial occurrence in 31 brands of "Spirulina" dietary supplements from the Greek market was applied for the first time. In all samples, operational taxonomic units (OTUs) of Arthrospira platensis were the predominant cyanobacteria. Some products contained additional cyanobacterial OTUs including a few known potentially toxic taxa. Moreover, 469 OTUs were detected in all 31 products collectively, with most of them being related to the Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria and Verrucomicrobia. All samples included heterotrophic bacterial OTUs, ranging from 9-157 per product. Among the most common OTUs were ones closely related to taxa known for causing health issues (i.e., Pseudomonas, Flavobacterium, Vibrio, Aeromonas, Clostridium, Bacillus, Fusobacterium, Enterococcus). The observed high cyanobacterial and heterotrophic bacterial OTUs richness in the final product is a point for further research on the growth and processing of Arthrospira biomass for commercial purposes.

15.
Extremophiles ; 19(5): 949-60, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26174531

RESUMEN

The sediment microbiota of the Mediterranean deep-sea anoxic hypersaline basins (DHABs) are understudied relative to communities in the brines and halocline waters. In this study, the active fraction of the prokaryotic community in the halocline sediments of L' Atalante, Urania, and Discovery DHABs was investigated based on extracted total RNA and 454 pyrosequencing of the 16S rRNA gene. Bacterial and archaeal communities were different in the sediments underlying the halocline waters of the three habitats, reflecting the unique chemical settings of each basin. The relative abundance of unique operational taxonomic units (OTUs) was also different between deep-sea control sediments and sediments underlying DHAB haloclines, suggesting adaptation to the steep DHAB chemical gradients. Only a few OTUs were affiliated to known bacterial halophilic and/or anaerobic groups. Many OTUs, including some of the dominant ones, were related to aerobic taxa. Archaea were detected only in few halocline samples, with lower OTU richness relative to Bacteria, and were dominated by taxa associated with methane cycling. This study suggests that, while metabolically active prokaryotic communities appear to be present in sediments underlying the three DHABs investigated, their diversity and activity are likely to be more reduced in sediments underlying the brines.


Asunto(s)
Archaea/aislamiento & purificación , Bacterias/aislamiento & purificación , Sedimentos Geológicos/microbiología , Microbiota , Tolerancia a la Sal , Archaea/clasificación , Archaea/genética , Bacterias/clasificación , Bacterias/genética , Secuencia de Bases , Mar Mediterráneo , Datos de Secuencia Molecular , ARN Ribosómico 16S/genética
16.
Syst Appl Microbiol ; 38(5): 358-67, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25976032

RESUMEN

Studies focusing on the temporal and spatial dynamics of bacterioplankton communities within littoral areas undergoing direct influences from the coast are quite limited. In addition, they are more complicated to resolve compared to communities in the open ocean. In order to elucidate the effects of spatial vs. temporal variability on bacterial communities in a highly land-influenced semi-enclosed gulf, surface bacterioplankton communities from five coastal sites in Igoumenitsa Gulf (Ionian Sea, Greece) were analyzed over a nine-month period using 16S rDNA 454-pyrosequencing. Temporal differences were more pronounced than spatial ones, with lower diversity indices observed during the summer months. During winter and early spring, bacterial communities were dominated by SAR11 representatives, while this pattern changed in May when they were abruptly replaced by members of Flavobacteriales, Pseudomonadales, and Alteromonadales. Additionally, correlation analysis showed high negative correlations between the presence of SAR11 OTUs in relation to temperature and sunlight that might have driven, directly or indirectly, the disappearance of these OTUs in the summer months. The dominance of SAR11 during the winter months further supported the global distribution of the clade, not only in the open-sea, but also in coastal systems. This study revealed that specific bacteria exhibited distinct succession patterns in an anthropogenic-impacted coastal system. The major bacterioplankton component was represented by commonly found marine bacteria exhibiting seasonal dynamics, while freshwater and terrestrial-related phylotypes were absent.


Asunto(s)
Bacterias/clasificación , Bacterias/genética , Biodiversidad , Agua de Mar/microbiología , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Grecia , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 16S/genética , Estaciones del Año , Análisis de Secuencia de ADN , Análisis Espacio-Temporal
17.
Microbiologyopen ; 3(5): 718-28, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25066034

RESUMEN

We compared the gut prokaryotic communities in wild, organically-, and conventionally reared sea bream (Sparus aurata) individuals. Gut microbial communities were identified using tag pyrosequencing of the 16S rRNA genes. There were distinct prokaryotic communities in the three different fish nutritional treatments, with the bacteria dominating over the Archaea. Most of the Bacteria belonged to the Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes. The number of bacterial operational taxonomic units (OTUs) was reduced from the wild to the conventionally reared fish, implying a response of the gut microorganisms to the supplied food and possibly alterations in food assimilation. The dominant bacterial OTU in all examined fish was closely related to the genus Diaphorobacter. This is the first time that a member of the ß-Proteobacteria, which dominate in freshwaters, are so important in a marine fish gut. In total the majority of the few Archaea OTUs found, were related to methane metabolism. The inferred physiological roles of the dominant prokaryotes are related to the metabolism of carbohydrates and nitrogenous compounds. This study showed the responsive feature of the sea bream gut prokaryotic communities to their diets and also the differences of the conventional in comparison to the organic and wild sea bream gut microbiota.


Asunto(s)
Alimentación Animal/análisis , Archaea/aislamiento & purificación , Bacterias/aislamiento & purificación , Tracto Gastrointestinal/microbiología , Microbiota , Dorada/microbiología , Alimentos Marinos/microbiología , Animales , Animales Salvajes/metabolismo , Animales Salvajes/microbiología , Archaea/clasificación , Archaea/genética , Bacterias/clasificación , Bacterias/genética , Explotaciones Pesqueras , Tracto Gastrointestinal/metabolismo , Datos de Secuencia Molecular , Filogenia , Dorada/metabolismo , Alimentos Marinos/economía
18.
Microb Ecol ; 67(1): 13-23, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24081282

RESUMEN

The objective of this study was to explore the succession of planktonic unicellular eukaryotes by means of 18S rRNA gene tag pyrosequencing in the eastern English Channel (EEC) during the winter to summer transition. The 59 most representative (>0.1%, representing altogether 95% of total reads), unique operational taxonomic units (OTUs) from all samples belonged to 18 known high-level taxonomic groups and 1 unaffiliated clade. The five most abundant OTUs (69.2% of total reads) belonged to Dinophyceae, Cercozoa, Haptophyceae, marine alveolate group I, and Fungi. Cluster and network analysis between samples distinguished the winter, the pre-bloom, the Phaeocystis globosa bloom and the post-bloom early summer conditions. The OTUs-based network revealed that P. globosa showed a relatively low number of connections-most of them negative-with all other OTUs. Fungi were linked to all major taxonomic groups, except Dinophyceae. Cercozoa mostly co-occurred with the Fungi, the Bacillariophyceae and several of the miscellaneous OTUs. This study provided a more detailed exploration into the planktonic succession pattern of the EEC due to its increased depth of taxonomic sampling over previous efforts based on classical monitoring observations. Data analysis implied that the food web concept in a coastal system based on predator-prey (e.g. grazer-phytoplankton) relationships is just a part of the ecological picture; and those organisms exploiting a variety of strategies, such as saprotrophy and parasitism, are persistent and abundant members of the community.


Asunto(s)
Cadena Alimentaria , Plancton/crecimiento & desarrollo , Estaciones del Año , Agua de Mar/microbiología , Cercozoos/clasificación , Cercozoos/crecimiento & desarrollo , Hongos/clasificación , Hongos/crecimiento & desarrollo , Haptophyta/clasificación , Haptophyta/crecimiento & desarrollo , Plancton/clasificación , ARN Ribosómico 18S/genética , Análisis de Secuencia de ADN
19.
Anaerobe ; 23: 9-11, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23933515

RESUMEN

By comparing 16S rDNA cloning and 454 pyrosequencing in the Nephrops norvegicus midgut, several common bacterial OTUs were detected. However, when only one method is to be selected, it needs to be considered whether the revealing of rare OTUs or their accurate phylogenetic relationships is mostly preferred.


Asunto(s)
Bacterias/clasificación , Bacterias/genética , Biota , Nephropidae/microbiología , Animales , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Tracto Gastrointestinal/microbiología , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
20.
FEMS Microbiol Ecol ; 72(3): 429-44, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20370830

RESUMEN

We investigated 16S rRNA gene diversity at a high sediment depth resolution (every 5 cm, top 30 cm) in an active site of the Kazan mud volcano, East Mediterranean Sea. A total of 242 archaeal and 374 bacterial clones were analysed, which were attributed to 38 and 205 unique phylotypes, respectively (> or = 98% similarity). Most of the archaeal phylotypes were related to ANME-1, -2 and -3 members originating from habitats where anaerobic oxidation of methane (AOM) occurs, although they occurred in sediment layers with no apparent AOM (below the sulphate depletion depth). Proteobacteria were the most abundant and diverse bacterial group, with the Gammaproteobacteria dominating in most sediment layers and these were related to phylotypes involved in methane cycling. The Deltaproteobacteria included several of the sulphate-reducers related to AOM. The rest of the bacterial phylotypes belonged to 15 known phyla and three unaffiliated groups, with representatives from similar habitats. Diversity index H was in the range 0.56-1.73 and 1.47-3.82 for Archaea and Bacteria, respectively, revealing different depth patterns for the two groups. At 15 and 20 cm below the sea floor, the prokaryotic communities were highly similar, hosting AOM-specific Archaea and Bacteria. Our study revealed different dominant phyla in proximate sediment layers.


Asunto(s)
Archaea/aislamiento & purificación , Bacterias/aislamiento & purificación , Biodiversidad , Sedimentos Geológicos/microbiología , Microbiología del Agua , Archaea/clasificación , Archaea/genética , Bacterias/clasificación , Bacterias/genética , ADN de Archaea/genética , ADN Bacteriano/genética , Mar Mediterráneo , Metano , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...